首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3165855篇
  免费   252882篇
  国内免费   5410篇
耳鼻咽喉   45399篇
儿科学   99886篇
妇产科学   86281篇
基础医学   453751篇
口腔科学   91726篇
临床医学   293612篇
内科学   610958篇
皮肤病学   65961篇
神经病学   263199篇
特种医学   124574篇
外国民族医学   1104篇
外科学   469883篇
综合类   73676篇
现状与发展   4篇
一般理论   1435篇
预防医学   260142篇
眼科学   75033篇
药学   236893篇
  10篇
中国医学   5588篇
肿瘤学   165032篇
  2018年   32863篇
  2017年   25311篇
  2016年   27901篇
  2015年   31719篇
  2014年   45201篇
  2013年   69056篇
  2012年   93217篇
  2011年   98889篇
  2010年   57996篇
  2009年   55612篇
  2008年   93836篇
  2007年   100109篇
  2006年   100471篇
  2005年   98103篇
  2004年   94355篇
  2003年   90753篇
  2002年   89254篇
  2001年   142692篇
  2000年   147071篇
  1999年   124011篇
  1998年   34179篇
  1997年   30754篇
  1996年   30777篇
  1995年   31478篇
  1994年   29633篇
  1993年   27709篇
  1992年   100778篇
  1991年   98142篇
  1990年   94867篇
  1989年   91515篇
  1988年   85093篇
  1987年   83654篇
  1986年   79532篇
  1985年   75844篇
  1984年   57575篇
  1983年   49652篇
  1982年   30007篇
  1981年   26837篇
  1979年   54508篇
  1978年   38869篇
  1977年   32649篇
  1976年   30565篇
  1975年   32570篇
  1974年   40011篇
  1973年   38472篇
  1972年   36326篇
  1971年   33702篇
  1970年   31671篇
  1969年   29636篇
  1968年   27198篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
101.
Lessons Learned
  • Afatinib and selumetinib can be combined in continuous and intermittent dosing schedules, albeit at lower doses than approved for monotherapy.
  • Maximum tolerated dose for continuous and intermittent schedules is afatinib 20 mg once daily and selumetinib 25 mg b.i.d.
  • Because the anticancer activity was limited, further development of this combination is not recommended until better biomarkers for response and resistance are defined.
BackgroundAntitumor effects of MEK inhibitors are limited in KRAS‐mutated tumors because of feedback activation of upstream epidermal growth factor receptors, which reactivates the MAPK and the phosphoinositide 3‐kinase–AKT pathway. Therefore, this phase I trial was initiated with the pan‐HER inhibitor afatinib plus the MEK inhibitor selumetinib in patients with KRAS mutant, PIK3CA wild‐type tumors.MethodsAfatinib and selumetinib were administered according to a 3+3 design in continuous and intermittent schedules. The primary objective was safety, and the secondary objective was clinical efficacy.ResultsTwenty‐six patients were enrolled with colorectal cancer (n = 19), non‐small cell lung cancer (NSCLC) (n = 6), and pancreatic cancer (n = 1). Dose‐limiting toxicities occurred in six patients, including grade 3 diarrhea, dehydration, decreased appetite, nausea, vomiting, and mucositis. The recommended phase II dose (RP2D) was 20 mg afatinib once daily (QD) and 25 mg selumetinib b.i.d. (21 days on/7 days off) for continuous afatinib dosing and for intermittent dosing with both drugs 5 days on/2 days off. Efficacy was limited with disease stabilization for 221 days in a patient with NSCLC as best response.ConclusionAfatinib and selumetinib can be combined in continuous and intermittent schedules in patients with KRAS mutant tumors. Although target engagement was observed, the clinical efficacy was limited.  相似文献   
102.
103.
104.
BACKGROUND AND PURPOSE:In the chronic phase after traumatic brain injury, DTI findings reflect WM integrity. DTI interpretation in the subacute phase is less straightforward. Microbleed evaluation with SWI is straightforward in both phases. We evaluated whether the microbleed concentration in the subacute phase is associated with the integrity of normal-appearing WM in the chronic phase.MATERIALS AND METHODS:Sixty of 211 consecutive patients 18 years of age or older admitted to our emergency department ≤24 hours after moderate to severe traumatic brain injury matched the selection criteria. Standardized 3T SWI, DTI, and T1WI were obtained 3 and 26 weeks after traumatic brain injury in 31 patients and 24 healthy volunteers. At baseline, microbleed concentrations were calculated. At follow-up, mean diffusivity (MD) was calculated in the normal-appearing WM in reference to the healthy volunteers (MDz). Through linear regression, we evaluated the relation between microbleed concentration and MDz in predefined structures.RESULTS:In the cerebral hemispheres, MDz at follow-up was independently associated with the microbleed concentration at baseline (left: B = 38.4 [95% CI 7.5–69.3], P = .017; right: B = 26.3 [95% CI 5.7–47.0], P = .014). No such relation was demonstrated in the central brain. MDz in the corpus callosum was independently associated with the microbleed concentration in the structures connected by WM tracts running through the corpus callosum (B = 20.0 [95% CI 24.8–75.2], P < .000). MDz in the central brain was independently associated with the microbleed concentration in the cerebral hemispheres (B = 25.7 [95% CI 3.9–47.5], P = .023).CONCLUSIONS:SWI-assessed microbleeds in the subacute phase are associated with DTI-based WM integrity in the chronic phase. These associations are found both within regions and between functionally connected regions.

The yearly incidence of traumatic brain injury (TBI) is around 300 per 100,000 persons.1,2 Almost three-quarters of patients with moderate to severe TBI have traumatic axonal injury (TAI).3 TAI is a major predictor of functional outcome,4,5 but it is mostly invisible on CT and conventional MR imaging.6,7DTI provides direct information on WM integrity and axonal injury.5,8 However, DTI abnormalities are neither specific for TAI nor stable over time. Possibly because of the release of mass effect and edema and resorption of blood products, the effects of concomitant (non-TAI) injury on DTI are larger in the subacute than in the chronic phase (>3 months).4,9,10 Therefore, DTI findings are expected to reflect TAI more specifically in the chronic than in the subacute phase (1 week–3 months).4 Even in regions without concomitant injury, the effects of TAI on DTI are dynamic, possibly caused by degeneration and neuroplastic changes.6,11,12 These ongoing pathophysiological processes possibly contribute to the emerging evidence that DTI findings in the chronic phase are most closely associated with the eventual functional outcome.12,13Although DTI provides valuable information, its acquisition, postprocessing, and interpretation in individual patients are demanding. SWI, with which microbleeds can be assessed with high sensitivity, is easier to interpret and implement in clinical practice. In contrast to DTI, SWI-detected traumatic microbleeds are more stable1 except in the hyperacute14,15 and the late chronic phases.16 Traumatic cerebral microbleeds are commonly interpreted as signs of TAI. However, the relation is not straightforward. On the one hand, nontraumatic microbleeds may be pre-existing. On the other hand, even if traumatic in origin, microbleeds represent traumatic vascular rather than axonal injury.17 Indeed, TAI is not invariably hemorrhagic.18 Additionally, microbleeds may secondarily develop after trauma through mechanisms unrelated to axonal injury, such as secondary ischemia.18DTI is not only affected by pathophysiological changes but also by susceptibility.19 The important susceptibility-effect generated by microbleeds renders the interpretation of DTI findings at the location of microbleeds complex. In the chronic phase, mean diffusivity (MD) is the most robust marker of WM integrity.4,6 For these reasons, we evaluated MD in the normal-appearing WM.Much TAI research focuses on the corpus callosum because it is commonly involved in TAI5,18,20 and it can reliably be evaluated with DTI,5,21 and TAI in the corpus callosum is related to clinical prognosis.6,20 The corpus callosum consists of densely packed WM tracts that structurally and functionally connect left- and right-sided brain structures.22 The integrity of the corpus callosum is associated with the integrity of the brain structures it connects.23 Therefore, microbleeds in brain structures that are connected through the corpus callosum may affect callosal DTI findings. Analogous to this, microbleeds in the cerebral hemispheres, which exert their function through WM tracts traveling through the deep brain structures and brain stem,24,25 may affect DTI findings in the WM of the latter.Our purpose was to evaluate whether the microbleed concentration in the subacute phase is associated with the integrity of normal-appearing WM in the chronic phase. We investigated this relation within the cerebral hemispheres and the central brain and between regions that are functionally connected by WM tracts.  相似文献   
105.
106.
BackgroundWhile many interventions to reduce hospital admissions and emergency department (ED) visits for patients with cardiovascular disease have been developed, identifying ambulatory cardiac patients at high risk for admission can be challenging.HypothesisA computational model based on readily accessible clinical data can identify patients at risk for admission.MethodsElectronic health record (EHR) data from a tertiary referral center were used to generate decision tree and logistic regression models. International Classification of Disease (ICD) codes, labs, admissions, medications, vital signs, and socioenvironmental variables were used to model risk for ED presentation or hospital admission within 90 days following a cardiology clinic visit. Model training and testing were performed with a 70:30 data split. The final model was then prospectively validated.ResultsA total of 9326 patients and 46 465 clinic visits were analyzed. A decision tree model using 75 patient characteristics achieved an area under the curve (AUC) of 0.75 and a logistic regression model achieved an AUC of 0.73. A simplified 9‐feature model based on logistic regression odds ratios achieved an AUC of 0.72. A further simplified numerical score assigning 1 or 2 points to each variable achieved an AUC of 0.66, specificity of 0.75, and sensitivity of 0.58. Prospectively, this final model maintained its predictive performance (AUC 0.63–0.60).ConclusionNine patient characteristics from routine EHR data can be used to inform a highly specific model for hospital admission or ED presentation in cardiac patients. This model can be simplified to a risk score that is easily calculated and retains predictive performance.  相似文献   
107.
108.
Volunteer infection studies using the induced blood stage malaria (IBSM) model have been shown to facilitate antimalarial drug development. Such studies have traditionally been undertaken in single‐dose cohorts, as many as necessary to obtain the dose‐response relationship. To enhance ethical and logistic aspects of such studies, and to reduce the number of cohorts needed to establish the dose‐response relationship, we undertook a retrospective in silico analysis of previously accrued data to improve study design. A pharmacokinetic (PK)/pharmacodynamic (PD) model was developed from initial fictive‐cohort data for OZ439 (mixing the data of the three single‐dose cohorts as: n = 2 on 100 mg, 2 on 200 mg, and 4 on 500 mg). A three‐compartment model described OZ439 PKs. Net growth of parasites was modeled using a Gompertz function and drug‐induced parasite death using a Hill function. Parameter estimates for the PK and PD models were comparable for the multidose single‐cohort vs. the pooled analysis of all cohorts. Simulations based on the multidose single‐cohort design described the complete data from the original IBSM study. The novel design allows for the ascertainment of the PK/PD relationship early in the study, providing a basis for rational dose selection for subsequent cohorts and studies.

Study Highlights
  • WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
☑ Volunteer infection studies are routinely used in antimalarial drug development to generate early pharmacokinetic/pharmacodynamic data for compounds.
  • WHAT QUESTION DID THIS STUDY ADDRESS?
☑ Can in silico analyses be used to suggest improvements to volunteer infection study designs?
  • WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
☑ Multiple dose adaptive trial designs can potentially reduce the number of cohorts needed to establish the dose‐response relationship in volunteer infection studies.
  • HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE?
☑ Real time data analyses can be used to recommend doses for adaptive volunteer infection studies.

Volunteer infection studies using the induced blood stage malaria (IBSM) model have been recognized as a valuable system for defining the key pharmacokinetic (PK) and pharmacodynamic (PD) relationships for dose selection in antimalarial drug development. 1 , 2 , 3 , 4 , 5 , 6 , 7 In such studies, healthy volunteers are inoculated intravenously with a given quantity (with small variability) of Plasmodium‐infected red cells. Parasitemia is then followed by quantitative polymerase chain reaction until a prespecified treatment threshold is reached when the test drug is administered. Parasite and drug concentrations are then measured. These studies are conducted prior to phase II dose‐response (D‐R) trials and can be included in an integrated first‐in‐human study protocol, or after completion of the first‐in‐human PK and safety study. IBSM studies have been typically designed as flexible multiple cohort studies where each volunteer of one cohort receives a single dose of the same amount of drug (“single dose per cohort”). 2 , 3 , 4 , 5 After each cohort, a decision is made to stop or to add a cohort to test a lower or higher dose based on the response observed in the previous cohorts.For the multiple single‐dose‐per‐cohort design, the starting dose is typically selected based on safety and PK information from a phase I single ascending dose (SAD) study and, more recently, on preclinical data from a severe combined immunodeficient mouse model, with the dose selected on the basis of being best able to inform the D‐R relationship, rather than aiming for cure. This approach, where a single dose is tested in all subjects of the initial cohort, risks missing the dose likely to be most informative for defining the PK/PD relationship.An alternative approach is to spread a range of doses across a smaller number of subjects within the initial cohort and use PK/PD models developed based on data from this cohort to support dose selections of subsequent cohorts and studies. Using data from a previous study, 2 we undertook an in silico investigation of such an adaptive study design, aiming to reduce the number of subjects exposed to inefficacious doses, and to establish a D‐R relationship. This multiple‐dose‐groups‐per‐cohort design, referred to as the “2‐2‐4” design, is contrasted with the already implemented study design depicted in Figure  1 .Open in a separate windowFigure 1Comparison of standard and adaptive designs of IBSM studies. A/B/C, dose levels to be selected during the progress of the study based on pharmacokinetic/pharmacodynamic results of the initial cohort; CHMI, controlled human malaria infection; D‐R, dose‐response; IBSM, induced blood stage malaria infection; n, number of subjects at each dose.The objectives of this retrospective analysis were to: (i) compare PK/PD parameter estimates from the initial cohort of the 2‐2‐4 study design with the prior results from the data of the full study and (ii) propose a preliminary workflow to establish D‐R early in an IBSM study, and use modeling and simulation (M&S) to support dose selections for subsequent cohorts and later phase clinical trials.  相似文献   
109.
Objective:To evaluate CT-ventilation imaging (CTVI) within a well-characterized, healthy cohort with no respiratory symptoms and examine the correlation between CTVI and concurrent pulmonary function test (PFT).Methods:CT scans and PFTs from 77 Caucasian participants in the NORM dataset (clinicaltrials.gov NCT00848406) were analyzed. CTVI was generated using the robust Integrated Jacobian Formulation (IJF) method. IJF estimated total lung capacity (TLC) was computed from CTVI. Bias-adjusted Pearson’s correlation between PFT and IJF-based TLC was computed.Results:IJF- and PFT-measured TLC showed a good correlation for both males and females [males: 0.657, 95% CI (0.438–0.797); females: 0.667, 95% CI (0.416–0.817)]. When adjusting for age, height, smoking, and abnormal CT scan, correlation moderated [males: 0.432, 95% CI (0.129–0.655); females: 0.540, 95% CI (0.207–0.753)]. Visual inspection of CTVI revealed participants who had functional defects, despite the fact that all participant had normal high-resolution CT scan.Conclusion:In this study, we demonstrate that IJF computed CTVI has good correlation with concurrent PFT in a well-validated patient cohort with no respiratory symptoms.Advances in knowledge:IJF-computed CTVI’s overall numerical robustness and consistency with PFT support its potential as a method for providing spatiotemporal assessment of high and low function areas on volumetric non-contrast CT scan.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号